The human brain contains a vast number of cells and shows extraordinary cellular diversity to facilitate the many cognitive and automatic commands governing our bodily functions. This complexity arises partly from large-scale structural variations in the genome, evolutionary processes to increase brain size, function, and cognition. Not surprisingly given recent technical advances, low-grade gliomas (LGGs), which arise from the glia (the most abundant cell type in the brain), have undergone a recent revolution in their classification and therapy, especially in the pediatric setting. Next-generation sequencing has uncovered previously unappreciated diverse LGG entities, unraveling genetic subgroups and multiple molecular alterations and altered pathways, including many amenable to therapeutic targeting.
Through a unique international partnership between the PLGA Research Program at DFCI, the Everest Center PLGA Research Program at the German Cancer Research Center and Research Institute of the McGill University Medical Center, researchers have released an article in the Annual Review of Genetics reviewing novel diverse LGG entities, in which oncogenic processes show striking age-related neuroanatomical specificity (highlighting their close interplay with development); the opportunities they provide for targeted therapies, some of which are already practiced at the bedside; and the challenges of implementing molecular pathology in the clinic.
Read the full publication by David T.W. Jones, PhD, Nada Jabado, MD, PhD, and Pratiti (Mimi) Bandopadhayay, MBBS, PhD, neuro-oncologist and Pediatric Low-Grade Astrocytoma (PLGA) director at Dana-Farber/Boston Children’s and recipient of a Pediatric Brain Tumor Foundation Early Career Development grant here.
Related Updates